Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Mechanically-excited waves appear as surface patterns on soft agarose gels. We experimentally quantify the dispersion relationship for these waves over a range of shear modulus in the transition zone where the surface energy (capillarity) is comparable to the elastic energy of the solid. Rayleigh waves and capillary-gravity waves are recovered as limiting cases. Gravitational forces appear as a pre-stress through the self-weight of the gel and are important. We show the experimental data fits well to a proposed dispersion relationship which differs from that typically used in studies of capillary to elastic wave crossover. We use this combined theoretical and experimental analysis to develop a new technique for measuring the surface tension of soft materials, which has been historically difficult to measure directly.more » « less
An official website of the United States government
